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Bivariate statistical analysis of data near a critical point: the 
case of the singular behaviour of the electrical resistivity 
temperature derivative 
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Institut de Physique B5, Universitd de Liege, B-4000 Liege, Belgium 

Received 13 June 1988 

Abstract. A (bivariate) anisotropic metric is used to fit theoretical expressions of the 
electrical resistivity temperature derivative near a critical point. Data chosen are those on 
TbZn. Effects of temperature and voltage measurement error (or precision) are investigated. 
Critical amplitudes, the critical exponent and the critical temperature are greatly affected 
by small uncertainties. The necessity to report such data uncertainties is emphasised. No 
definite conclusion on parameter values can be made at this time. A method of ‘randomly 
modified data’ shows the complementarity between simulation and laboratory work. The 
method a posteriori indicates how one may observe variations in assumed ‘constant errors’ 
for standard measurements. 

1. Introduction 

In modern statistical mechanics, critical exponents are key parameters in deciding 
upon the type of phase transition occurring in systems (Fisher 1967, Kadanoff eta1 
1968). Theoretical predictions of such parameters are now mainly based on the 
renormalisation group technique (Ma 1973, 1976, Fisher 1974, Wilson 1983 and 
references therein). 

Much experimental work has been performed near phase transitions in 
homogeneous and inhomogeneous systems, often resulting in extraction of critical 
exponents. Although much work is still needed, one might state that the behaviour of 
static properties is quite well understood in most systems. Many models and much 
intuition have been available to explain most of the known anomalies (i.e. critical 
exponents), including crossover effects, dimensionality effects, etc. The theory of 
‘critical exponents’, the scaling hypothesis and universality laws are thus quite well 
established for static properties (Fisher 1967, Stanley 1971, Ma 1976). 

The case of time-dependent or non-equilibrium properties is not so well established. 
Non-universal laws are predicted, and critical exponents are not so easily calculated 
(through dynamic renormalisation group or other techniques). Relations between 
‘static and ‘dynamic’ critical exponents are not obvious either-nor is it known whether 
indeed they exist! 

On the other hand, good experimental conditions are crucial. It is well known that 
experimental data in the vicinity of a phase transition must be taken with great care 
due to the importance of large fluctuations and their subsequent (theoretically infinite) 
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correlation length, more so when dealing with non-equilibrium properties, i.e. where 
a gradient is present. Experimentalists must in principle wait a very long time to be 
sure that a quasi-equilibrium state is reached. Therefore an a posteriori check of the 
validity of an experimental run and of a data report is the slowness of the temperature 
sweep in the vicinity of a critical point. When this is the case, many experimental 
points can then be measured on a narrow temperature range, and a temperature 
derivative can be taken with some precision and reliable physical information obtained 
(Ausloos and Durczewski 1980). 

Such a temperature derivative is, indeed, sometimes necessary. Properties like the 
electrical resistivity, the thermoelectric power, the Hall resistance, etc usually behave 
smoothly near a phase transition, with the notable exception of the superconductivity 
transition. The difference arises from the type of order parameter governing the 
transition. A singularity in the transport coefficient is usually found if the latter 
describes the transport of the order parameter itself. When the transport coefficient 
involves the vanishing of the order parameter only in an indirect way, the coefficient 
behaves smoothly but its derivative can present an anomalous peak, similar to the 
lambda peak seen on static properties. 

One might also remember that it is believed that the critical exponent of the electrical 
resistivity temperature derivative is the same as that of the specific heat (Fisher and 
Langer 1968, Balberg and Helman 1978). Therefore it is of interest to obtain an 
excellent fit of the data and conclusive value for the parameters. The system which 
remains the most illustrative and the paradigm of these remaks is Dy where different 
types of singularities have been found (see Ausloos and Durczewski (1980) for a critical 
review). 

Among the latest attempts to obtain a large number of d p / d T  data points with 
great precision, in the truly critical region, is the study of the ferromagnetic-paramag- 
netic transition of the intermetallic compound TbZn (Sousa et al 1980). Some data 
analysis has been already reported in this case. It was found that the critical exponent 
could not be obtained without any ambiguity. A positive or negative value of the 
critical exponent together with a logarithmic divergence of dp/d  T could be obtained. 

To reanalyse the TbZn data rather than those on Dy seems of greater value because 
of the higher precision obtained on one hand, and also because the transition seems 
more simple. In Dy, the transition is between an antiferromagnetic phase and a 
paramagnetic one. Therefore it is not clear whether one (or two) singular term(s) must 
be used in the analysis (Ausloos 1977). Furthermore, one has argued that the order 
parameter might change from a n = 4 spin model to a dipolar Ising type near the Nee1 
temperature (Lederman 1975). In the case of TbZn, the magnetic transition is compli- 
cated by a tetragonal distortion of the unit cell below the Curie temperature T,. 
However above T, a very reliable data analysis can be made. 

Many data statistical treatments exist (Green and Margerison 1977). In this paper, 
we will use a method proposed by Sobotta (1985). It is based on a bivariate analysis 
of the data (Eadie et al 1971). This is the first method, to our knowledge, to take into 
account errors on the resistivity and temperature measurements on the same footing 
in the critical region where the fit function is singular. It has been tested on artificial 
data in Sobotta’s original paper. It is of interest to examine the advantages of the new 
method in a real case. A method (Barker and Diana 1974) giving a polynomial fit to 
a set of data when both variables have uncertainties does not apply here because we 
have to allow for a possible singularity at T, (Laurent and Ausloos 1989). 

In 0 2, we recall the usual procedure to extract critical exponents from data through 
a log-log fit. In the case of data transformation (such as numerically taking a derivative) 
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before analysis, some information can be lost. More drastically, if the derivative is 
taken with respect to the x-axis variable, and since the latter is not obtained error free, 
a simple linear regression analysis is wrong. The fit parameters must be obtained taking 
into account different weights (also called ‘metrics’) along the x and y directions. 
Furthermore, the weights along the y direction depend on those along the x direction, 
at various data points, due to the data manipulation. (Moreover these weights can 
vary from point to point.) Therefore the standard ‘error bars’ are not strictly parallel 
to the x and y axes, but can be asymmetrical and be at an angle with respect to each 
other. Hence, a good method of fitting will necessarily have to use (bivariate) 
‘anisotropic metrics’, as presented below. 

In 0 3, an application to a power-law fit of d p / d T  data on TbZn is presented, 
taking into acccount inherent simplification (constant weights) due to currently avail- 
able data. The stability of the results with respect to Gaussian noise is also checked. 
A second ‘numerical control’ investigation is also presented by allowing for two different 
weights (in a priori chosen intervals) along the x and y axes. In this case, a log 
theoretical law is used as an example (to reduce computer time). Finally a combination 
of both tests is made. To our knowledge this sort of investigation has never been 
reported. 

In 0 4, a discussion of the results is given. It is indicated that the latter tests can 
imply interesting deductions on reported experimental data or runs. A comparison 
with the best estimates corresponding to this work is made. Some caution is given 
about definite conclusions in related similar works (0 5 ) .  

2. Bivariate least-squares method 

The usual procedures to determine critical exponents and critical amplitudes start from 
the power-law expression 

(l /p,)(dp/dT) = C + DE-’ (1) 

( l / p , ) (dp /dT)=Aln(T-  T J S B  (2) 

or, when the exponent is equal to zero, from a logarithmic expression 

where the expressions are written for the electrical resistivity data near the critical 
temperatures T,, with E = ( T - TJ/ T, and p c  = p (  T,). The unknowns are the amplitudes 
A, B, C and 0, and the critical exponent A. The critical temperature T, is often fixed 
during data fitting. Afterwards, one lets T, sweep through the critical region, and 
searches for the minimum error bars on the parameters (Sousa et a1 1980). 

A well known point of controversy stems from the fact that d p / d T  is not measured 
directly, but is obtained from a numerical derivative (dp /dT  = Ap/AT) of the data on 
the electrical resistivity p. This implies dividing two small numbers to obtain some 
‘reasonable’ value. Furthermore, authors may obtain such a derivative either directly 
from neighbouring points or after data smoothening through, e.g., some spline or 
polynomial function. Other authors take the derivative from the rough data and smooth 
the resulting data later. Sometimes a ‘background’ is subtracted so that B or C = 0. 
The critical exponent A is then obtained, simply speaking, from a least-squares analysis 
of a log-log plot. 

The major problem obviously arises from the inherent errors in measuring (in 
fact , a voltage drop across the sample) the temperature T, and their propagation in 
the data transformation. In the case of smooth functions the total mean error for 
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independent errors on p and T may be approximately calculated through the Gauss 
linear superposition formula (Dacunha-Castelle and Duflo 1982). However for power- 
law or logarithmic-law expressions like (1) and (2), the probability distributions of 
the errors on In1 T -  T,I and InldpldTI cannot be assumed to be directly obtained from 
those on T and p. Often, one further assumes that T measurements are error free, or 
that error bars on T are constant. However, this leads to another difficulty inherent 
in the experimental conditions when taking data near a critical point. For better 
precision, quasistatic conditions must be maintained. Hence very small temperature 
steps must be monitored. It thus happens that the temperature difference ( T ,  - T )  is 
of the same order of magnitude as the mean error D, on T, in particular near T,, 
where the best precision is looked for. As pointed out by Sobotta (1985), this may 
lead to the interpretation of the data in terms of a crossover between exponents near 
T,, i.e. a crossover between different models (see above). 

Therefore one has to avoid parametric fits influenced by data manipulation and to 
use a method which tests ‘composite hypotheses’! The bivariate method requires the 
minimisation of the sum VN of the local maximum likelihood estimators V, (Eadie 
et a1 1971) 

for the N data points p’(  T c )  in terms of the critical amplitudes in p ’ =  dp/dT, but also 
for the unknown temperatures T, defined by p: = p‘ (  z) and where the fitting curve is 
thus J( T ) .  One has thus to minimise a function of N + NA parameters where NA is 
the number of critical parameters: NA = 4 and NA = 3 in (1) and ( 2 ) ,  respectively. In 
the following, we will instead use the normalised maximum likelihood estimator 

V =  VN,”. (4) 

The errors on p‘ and T are assumed to be distributed according to (here arbitrary but 
known distributions) D ( p ’ )  and D( T ) ,  respectively. The method therefore consists of 
obtaining the smallest distance between the data points ( p i ,  T,)  and the theoretical law 
( p i ,  z) in an anisotropic metric defined by D ( p ‘ )  and D( T )  (Lybanon 1984, Mantri 
1984). 

In order to speed up the minimisation procedure, and avoid searching for minima 
in an N +  NA parameter space, one first minimises V,  with respect to T, and then 
minimises V ,  with respect to the NA remaining parameters. 

The method outlined so far is very general, but it is now applied to a more simple 
case where 

D ( T , )  = DT and D b : )  = D p ,  ( 5 )  

since other authors consider the error bars to be constant. Therefore, we will use such 
an approximation in the next section, but will test it afterwards. 

3. The case of p ’ ( T )  in TbZn near T, 

3.1. Data as taken 

In our opinion, the most precise data on a transport property to analyse in the vicinity 
of a critical point are those of Sousa et a1 (1980) on the temperature derivative of the 
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electrical resistivity on TbZn. Furthermore they have been analysed along classical 
lines (assuming D( T )  = 0) and are easily available (Amado 1984). They are shown in 
figure 1 ( a ) .  According to Amado (1984) the error on the temperature measurement 
is constant and approximately equal to DT = 0.0003 while that on dp/d T = p’  is equal 
to Dp, = 0.01. The N = 36 data points examined are those in the critical region, which 
has been determined after fitting the overall p’ curve to a ( T  - TJ”* law in order to 
eliminate the classical (‘fluctuation free’) region. The ‘first’ estimate of T, is 199.54 K. 
Hence the critical region extends from about E = 7 x According 
to previous analysis (table 1 in Sousa et a1 1980) an accurate guess of the parameters 
in ( 2 )  is 

to E = 7 x 

T, = 199.54 K Ao= -0.3 x loT2 Bo = 0.3 x ( 6 )  
These three values are used as the starting point of the minimisation routine. The best 
fit to ( 2 )  is found for (see table 1) 

T, = 199.533 K A = -0.141 13 x B = 0.313 35 x lo-* (7) 

O 80 I 1 I I 4 I 
I b i  

I I I I I 1 
199 I 200 1 200 5 200 9 

T r 

Figure 1. Temperature derivative of the electrical resistivity of TbZn. Data of Sousa et a1 
(1980) (circles). ( a )  Fit to (2) assuming a logarithmic singularity (crosses) assuming 
D, = 0.0007 and 0,. = 0.01 (see text for notation). ( b ) - ( d )  Fit to Gaussian modified data 
with a probability distribution given by (9). Initial conditions and numerical values of the 
parameters are found in table 3 .  
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Table 1. Data analysis of the electrical resistivity temperature derivative of TbZn near the 
critical temperature T, assuming a logarithmic singularity. Notation as in text. The first 
line of each run corresponds to the ‘initial values’, the second line to the best resulting fit. 

( l /p,)(dp/dT) = A InlT- Tcl+ B 

7 (-4) 1(-2)  36 

36 

33 

33 

31 

31 

3 (-3) 

3 (-3) 

3 (-3) 

3 (-3) 

3 (-3) 

3 (-3) 

-3 (-3) 

-3 (-3) 

-1.4(-3) 

-1.4 (-3) 

-1.6 (-3) 

-1.6 (-3) 

-1.5 (-3) 

-1.5 (-3) 

-1.26 (-3) 

-1.31 (-3) 

3 (-3) 

3 (-3) 

3 (-3) 

3 (-3) 

3 (-3) 

3 ( -3)  

3 (-3) 
3.07 (-3) 

3 (-3) 

3.1 (-3) 

3.1 (-3) 

3.2 (-3) 

3.2 (-3) 

3.1 (-3) 

3.1 (-3) 

3.09 (-3) 

199.54 
199.53 
199.64 
199.53 
199.54 
199.47 
199.64 
199.47 
199.54 
199.50 
199.64 
199.50 

199.54 
199.57 

199.54 
199.56 

0.199 

0.199 

0.142 

0.142 

0.131 

0.131 

1.80 

1.99 

which corresponds to V =  0.1977 (figure l ( a ) ) .  Since the precision of the original data 
is a rather rough estimate, another trial fit has been made assuming DT = 0.000 05 but 
keeping Dp, = 0.01 and the initial values (6). It has been found that the best fit occurred 
for 

T, = 199.563 A = - 0 . 1 3 1 2 7 ~ 1 0 - ~  B = 0.309 88 x (8) 

which leads to a larger V =  1.993 15 (figure 2(a) ) .  For a narrower error margin on the 
temperature the minimised maximum likelihood increases. Thus the a priori estimated 
mean error imposes a drastic constraint effect on the fit. Other cases are also given in 
table 1 and correspond to different initial conditions. 

The power-law theoretical prediction (1) has also been tested under various initial 
conditions (table 2 ) .  The case 0,. = 0.02 and DT = 7 x lop5 is graphically displayed in 
figure 3. In this case, a negative initial value of A was assumed. The initial values of 
C and D have been taken as a rough guess based on an order of magnitude argument. 
The number of data points was arbitrarily reduced to N = 33. We eliminated the three 
data points furthest away from T, in order to emphasise the importance of the critical 
region, i.e. the value of the ‘Ginzburg-reduced temperature’ was reduced ( cG = 5 x 
in order to avoid effects (if any) of the ‘classical’ regime. Other cases also are given 
in table 2 for different initial conditions. 

3.2. Gaussian-modijied data 

Measurements are subject to various errors: besides the sensitivity of the data acquisi- 
tion instruments, systematic errors can also be unwittingly introduced by the experi- 
mentalists. The size of error bars is sometimes quite debatable. (It is known that the 
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Figure 2. Temperature derivative of the electrical resistivity of TbZn. Data of Sousa et a1 
(1980) (circles). ( a )  Fit to logarithmic singularity (equation (2)) (crosses) with D, = 
0.00005 and D,.=O.Ol (see text for notation). ( b ) - ( d )  Fit of logarithmic law (2) to 
Gaussian-modified data. Initial conditions and numerical values of the parameters are 
found in table 3. 

Table 2. Data analysis of the electrical resistivity temperature derivative of TbZn near the 
critical temperature T, assuming a power-law behaviour. Notation as in text. The first 
line of each run corresponds to the 'initial values', the second line to the best resulting fit. 

7((-3)  1(-2)  33 1(-2)  -1.05 (-2) 199.54 -0.3 (-1) 
1.8 (-2) 2.6 (-2) 199.52 -0.98 (-1) 0.14 

33 1 ( -2 )  -1.05 (-2) 199.58 -0.3 ( - 1 )  

33 1 (-2) -1.05 (-2) 199.64 -0.3 (-1) 
8.3 (-3) -2.2 (-2) 199.62 -0.27 (0) 0.138 

6.2 (-3) -3.2 (-3) 199.69 -0.42 (0) 0.137 

7 ( - 5 )  2(-2)  33 1.0 (-2) -1.05 (2)  199.64 -0.3 (-1) 
9.62 (-3) -1.91 (-2) 199.63 -0.2 (0) 1.7 
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Figure 3. Temperature derivative of the electrical resistivity of TbZn (Sousa et al 1980) 
(circles). Fit to power-law expression (1) (crosses) with a negative critical exponent. 

‘best modern values’ of fundamental constants fall outside error bars of not so old 
measurements; see Dufour (1987).) 

On the other hand, it is interesting to observe the stability of the above results. 
Initial conditions have some influence on the convergence and the final values but 
have reasonably understandable effects. Data rounding errors are less obvious. There- 
fore we have slightly modified the data as taken. Furthermore, by allowing for a small 
Gaussian deviation from the data points, and by randomly generating such an error, 
we (hopefully) reproduce a set of experimental runs which would take a long time to 
perform in the laboratory. 

The probability distribution of Gaussian errors on T and p’ is given by the Gauss 
expression (Dacunha-Castelle and Duflo 1982) 

Results for different runs, i.e. with different values of DT and Dp,, are given in table 
3. The first line of each run corresponds to the data as taken. In figure l ( b ) - ( d )  we 
show the results concerning a particular run together with the fit to the data as taken 
(figure 3 ( a ) )  for the assumed value of DT and Dp, (table 3). 

In order to show the drastic influence of weak fluctuations in the generated data 
randomness, we show in figure 2 ( b ) - ( d )  results for another run, assuming the same 
error on p’ but with smaller precision on the T measurements. Numerical values are 
found in table 3. 

3.3. Variable weight test 

A second ‘numerical control’ investigation on the apparent variability of results can 
test the assumption that DT and LIP, are constant during the experimental runs (e.g. 
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Table 3. Same as table 1, but allowing for an extra arbitrary distribution of errors on each 
data point. The first line corresponds to the initial values. The next lines correspond to 
the investigated ‘Gaussian randomly modified’ data. 

( l /p , )dp/dT= A In(lT- TcI)+ B 

Initial conditions -3 (-3) 
5 ( - 5 )  1(-2)  36 -1.31 (-3) 

-1.318 (-3) 
- 1.282 (-3) 
-1.247 (-3) 

7(-5)  2( -2)  36 -1.31 (-3) 
-1.30 (-3) 
-1.27 (-3) 
-1.23 (-3) 

7( -4)  3(-2)  36 -1.31 (-3) 
-1.27 (-3) 
-1.30 (-3) 

3(-5)  3(-2)  36 -1.31 (-3) 
-1.24 (-3) 
-1.34 ( - 5 )  

7(-4)  1( -2)  36 -1.411 (-3) 
-0.978 (-3) 
-0.966 (-3) 
-0.908 (-3) 

3 (-3) 
3.098 (-3) 
3.131 (-3) 
3.03 (-3) 
3.06 (-3) 

3.09 (-3) 
3.4 (-3) 
2.99 (-3) 
3.05 (-3) 

3.09 (-3) 
3.14 (-3) 
2.95 (-3) 

3.10 (-3) 
3.12 (-3) 
2.97 (-3) 

3.13 (-3) 
2.95 (-3) 
2.83 (-3) 
2.63 (-3) 

199.54 
199.563 
199.548 
199.5 84 
199.589 

199.563 
199.596 
199.595 
199.594 

199.563 
199.553 
199.547 

199.562 
199.571 
199.583 

199.533 
199.699 
199.752 
199.964 

- 
1.99 
2.05 
2.32 
3.84 

0.572 
0.794 
1.20 
1.93 

0.28 
0.555 
1.01 

0.303 
0.584 
1.050 

0.198 
0.738 
0.925 
0.887 

because quasistatic conditions are maintained). In order to have a simple test on this 
assumption, the errors ( DT and Dp,)  have been arbitrarily doubled after and including 
the 13th data point away from the initial input value of T,. Resulting fits are not 
shown, but it is clear that the fit has to become more precise since larger ‘error bars’ 
are allowed: the crosses ‘fall’ much more on the theoretical curve. In this test, it has 
been assumed that the singularity is logarithmic. This reduces the number of parameters 
to be calculated. This law is also ‘more physically’ accepted in general (Ma 1976). 

The resulting parameter values for A, B, T, and V are given in figures 4-6 as a 
function of the number i of data points. It is also readily seen that the convergence 
is much smoother in this ‘double weight’ case. This shows the necessity of accurately 
defining standard error bars on data points, and the need to consider them in statistical 
analysis. This can also be an a posteriori check on the data. In particular, one can 
state that the precision of the data was likely to be varying in Sousa et a1 (1980), even 
though strict quasi-equilibrium conditions were maintained and the numerical deriva- 
tive technique used was optimised to keep as much information in the data as possible. 

3.4. Gaussian-modiJied data and variable weights 

Fifty Monte Carlo simulations of (2), taking values of DT = 5 x and ZIP, = lo-* 
with error doubling starting at (and including) the 13th data point away from the 
initial value T,= 199.54 K have finally been made. The initial values and the results 
are given in table 4 together with the correlation coefficients (Dacunha-Castelle and 
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Figure 4. Temperature derivative of the electrical resistivity of TbZn data (circles) from 
Sousa era/  (1980). ( a )  and ( b )  crosses: fit to (10). Initial values and resulting parameter 
values are given in table 5 .  
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Figure 5. Critical amplitudes A and B of the logarithmic singularity in the electrical 
resistivity temperature derivative of TbZn as a function of the number of data points under 
the assumption of constant uncertainty in the data (full curve) and allowing for a constant 
but twice as great uncertainty starting from and including the 13th data point away from 
the critical temperature (broken curve). 

Duflo 1982) 

for the variables x and y, and where D ( x )  (or D ( y ) )  are the mean square root of the 
variance (the ‘standard deviation’). The values obtained by Sousa et a1 (1980) are also 
given. The parameters B and T, are almost identical to ours though the amplitude A 
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Figure 6. Critical temperature of TbZn as determined by fitting the electrical resistivity 
temperature derivative to a logarithmic law near T, assuming constant uncertainty in the 
data (full line) and allowing for constant but twice as great uncertainty at and after the 
13th data point away from T, (broken line). 

Table 4. Critical amplitudes and critical temperature of a 50 run Monte Carlo simulation 
of the TbZn electrical resistivity temperature derivative data (Sousa eta1 1980) near the 
critical temperature, for 36 data points above the critical temperature. Correlation 
coefficients between amplitudes and with respect to the critical temperature are also given. 

( l / p , ) ( d p / d T ) = A  In/T- T,I+B N = 3 6  

A B 

Initial values 5 (-5) 1(-2) -3 ( -3)  3 (-3) 199.540 
Output values (L = 50 runs) -1.303 (-3) 3.096 (-3) 199.565 
Standard deviation *6.454(-5) 13.116 (-5) 10.023 
Sousa er al (1980) -3.02 (-3) 3.10 ( -3)  199.56 

Correlation coefficients 
(A ,  B )  (A, TJ ( B ,  T J  

-0.7662 0.9571 -0.8893 
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is rather different. Correlation coefficients with respect to T, have an absolute value 
around 0.9 which is acceptable though the correlation between A and B is rather weak. 

4. Discussion of results 

The first conclusion reached, from perusal of table 1, concerns the great stability of 
the results against initial conditions. The critical temperature and the critical amplitudes 
are rather well determined. The critical exponent A is, however, less accurately 
determined. The number of data points taken has a small but unclear influence. For 
example, the critical temperature shift does not seem directly proportional to the 
number of data points taken. 

Another remarkable fact is due to the assumed error DT and D,,. The maximum 
likelihood estimator becomes larger when DT or D,, decreases as expected from (3). 
However such a quantity appreciably varies from data run to data run when a Gaussian 
error is arbitrarily introduced in the data (table 3). The order of magnitude of V,  
varies in a non-systematic way. 

In order to understand the causes of such observations two other numerical 
investigations have been made. First the power-law theoretical formula (1) has been 
modified to 

A direct correspondence to (1) exists between the coefficients and the exponent. 
One has 

A-LY ( 1 l a )  

D H - A l a  (1lb)  

C e B2+ A l a .  (1lc)  

In the limit a + 0, (10) leads to 

( l / p , ) ( d p / d T ) = A l n  & + B 2  

which is (2), and where the constants are a independent. The only difference with 
(2) is in the amplitude of the temperature-independent term 

- A l n  T ,+B,eB.  (13) 

It was observed by Amado (1984) and Amado et a1 (1988) that equation (1) leads 
to (Sousa et al 1980) 

d p / d T  = 10.040- 1 0 . 4 6 0 ~ ~ ' ~ ' ~  (14a) 

T, = 199.56 K (14b) 

with 

while (10) leads to 

d p l d T  = 10.565 - 1 0 . 9 2 2 ~ ~ ' ~ "  

with 

T, = 199.56 K. (15b) 
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Table 5. Data analysis of the electrical resistivity temperature derivative of TbZn near the 
critical temperature T, assuming a power-law behaviour where amplitudes are independent 
of the critical exponent a: when the latter goes to zero. 

7(-4)  1(-2)  36 
36 

33 
33 

33 
33 

33 
33 

31 
31 

7(-5)  1( -2)  33 

7 ( - 4 )  2(-2)  33 

-9.5 (-4) 
-8 (-4) 

-9.5 (-4) 
-8.0 (-4) 

-9.5 (-4) 

-9.5 (-4) 

-9.5 (-4) 
-8.1 (-4) 

-9.5 (-4) 
-5.4 (-2) 

-9.5 (-4) 

-2.5 (-3) 

-8.07 (-4) 

-3.8 (-3) 

-2.6 (-4) 
-7.0 (-4) 

-2.6 (-4) 
-7.2 (-4) 

-2.6 (-4) 
-7.6 (-3) 

-2.6 (-4) 
-7.12 (-4) 

-2.6 (-4) 
-7.1 (-4) 

-2.6 (-4) 
-1.2 (-2) 

-2.6 (-4) 
-9.5 (-3) 

199.64 
199.81 

199.54 
199.85 

199.51 
199.51 

199.64 
199.84 

199.64 
199.87 

199.51 
199.64 

199.54 
199.62 

-0.13 
-0.06 

-0.13 
-0.059 

-0.13 
-0.092 

-0.13 
-0.06 

-0.13 
-0.059 

-0.093 
-0.264 

-0.013 
-0.20 

0 .40 

V 

0 . 3 5  

0. 30 L 
t I I I I I I 

10 11 12 13 14 15 

i 
Figure 7. Maximum likelihood estimator as a function of the number of data points for 
the fit of the electrical resistivity temperature derivative of TbZn near the critical temperature 
when a constant uncertainty is assumed for all data points (full curve) and when the 
uncertainty is arbitrarily doubled at the 13th data point (broken curve). 
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The above results considered no uncertainty on T (or on p’ ) .  We thus used our method 
to examine the behaviour of (10). Results are reported in table 5 .  One concludes that 
the critical exponent appears systematically smaller than in table 2, except for the best 
case of table 2 and table 5 ,  where it is equal and where the maximum likelihood 
estimator is the same. Taking ( 1 1 )  into account, the amplitudes are nevertheless 
different. 

A classic test is the examination of the stability of T,.  From table 5 one can see 
that T, may vary between 199.87 and 199.51, which seems a rather large variation when 
good experimentalists usually report a precision of the order of on measuring the 
temperature. 

Notice also the very important information resulting from our fitting procedure: a 
‘very precise’ measurement of T or p’ does not imply that the best data point (as 
determined from the local maximum likelihood estimator) falls on the theoretical curve 
(e.g. figure 4(b)).  The anisotropic metric only finds the shortest distance to the 
theoretical curve. 

Furthermore, the procedure allows for finding that T, has not been appropriately 
guessed, but could be quite different (figure l(b)-(d)). In this case, one could relax 
the assumption of the same amplitudes and exponents on each side of T,. This has 
not been done here to keep numerical work at a reasonable value, i.e. less time 
consuming, for this report. Extensions would be useful. 

5. Conclusion 

From this analysis one can conclude that much work remains to be done if one wants 
to obtain and understand critical amplitudes and critical exponents and, consequently, 
theoretical laws for the behaviour of singular physical properties in the vicinity of a 
phase transition. The asymptotic behaviour of singular curves is very difficult to handle. 
This bivariate method brings much to the data analysis, since it takes account of 
experimental uncertainties in the measured variables, and may take into account 
numerical data treatment prior to the ‘critical data analysis’. It can allow for regularity 
and irregularity at a critical point, but does not bring a final point to data analysis as 
of now. 

One can understand from the above that almost ‘any value’ can be obtained. Many 
authors have attempted to convince readers (and themselves) about critical point values 
resulting from a particular analysis, sometimes forcing expected values to emerge from 
an analysis by throwing away ‘strange’ data points. The above method, which takes 
into account error bars (which may be large) on data points, avoids such a data 
handling procedure. Moreover it is seen that defining a small error on say, temperature 
is essential in obtaining not only a reasonable value of the critical temperature and of 
the critical amplitudes, but certaintly also for the critical exponent. Hence greater 
confidence can be expected in the future if the above rules are respected in reporting 
data. 

One valuable input of the theory is the possibility of using an anisotropic metric 
for measuring the distance between the theoretical curve and the data point. This is 
also very useful for other types of analysed functions: discontinuous, multisingular or 
piecewise-defined functions. It has to be modified to analyse critical point singularities 
from power series expansions (Arteca et a1 1985) but could be used to check conver- 
gence radius. 
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In the particular case which is examined here, it is a posteriori observed that the 
method is extremely sensitive to the handling of experimental uncertainties and to 
inform on hidden lack of data precision. The observation of a possible variation in 
DT and 0,. in the vicinity of T, does not imply bad data acquisition nor the lack of 
a quasi-equilibrium condition, but rather shows the need for more precise information 
before the efficient data analysis. Plotting test output data as in figure 7 is very 
meaningful, but is done very rarely. 

Finally, the method used here combined with data simulation seems to be of interest. 
The time spent in ‘better data definition’ by experimentalists in a laboratory might be 
regained in the data analysis when computer experiments can be performed as here, 
i.e. supplementing data with Monte-Carlo-like physics. 

This work has again shown the uncertainty in attributing values to critical amplitudes 
and the difficulty of having a definite conclusion on the sign or value of the critical 
exponents resulting from experimental work. Although the critical exponent is found 
to be positive here for dp /d  T in TbZn, it does not mean that it would remain positive 
if the amplitude were allowed to differ on both sides of T,. This is another problem 
to be investigated. Last, but not least, the need to obtain more information on error 
bars about such experimental data if elaborate data analysis is undertaken has been 
pointed out. 
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